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1 Motivation 
To reduce our reliance on fossil and nuclear energy, states and society are increasingly interested in and heavily 
investing in renewable energy. In particular focus is solar energy, due to its abundance of sunlight. However, the 
various meteorological and topological impacts make reliable operation challenging - which is why it is of great interest 
to energy companies and private consumers to have access to accurate predictions of their photovoltaic (PV) systems' 
power output. While their interests are aligned, the timespans of interest are different: 
 
- Intra-day (12-24h) predictions allow private consumers to economically optimize the usage of their own or network 

power, by charging their EV, running the heat pump or using their whiteware at the optimal time. 
- Intra-hour (15-60min) predictions allow utility companies and power grid operators to develop more efficient and 

sophisticated strategies for managing their grids and reduce costs by buying or selling power at the right time and 
avoid price fluctuations, by leveraging more robust knowledge about upcoming availability of power [e.g., 
Ayon2017, Zhou2017]. 

 
Finally, comparing PV power output predictions based on meteorological forecasts allows the introduction of a 
feedback loop to improve meteorological forecasting models based on a better understanding of factors impacting 
the local weather. 

2 Related Work 
Our extensive literature review showed various challenges for developing accurate PV power output predictions, 

including inaccuracies in meteorological forecasts, seasonal differences, PV system differences, influences from the 

sun position, snow, shadow, and dust, as well as limited availability of actual PV power output data as Ground Truth 

in reasonable quality and quantity. Besides the more traditional physical and statistical methods, most recent 

approaches focused on applying AI/ML techniques [e.g., Li2019, Giorgi2015], for both, the intra-day and intra-hour 

predictions. An overview of the most promising recent approaches can be found in the following table: 

Table 1: Overview of previous research related to PV power output prediction, split into intra-day and intra-hour 

Category Techniques Used References 

Intra-day 

Hybrid Systems Ciapala2018 

Neural Network (*RNN, **BPNN) AlDahidi2018**, Theocharidies2018*, Kou2013** 

Regression Clack2017, Wolff2014, Sunday2015, DeBock2014, Mouatasim2018, Ramenah2018 

Other Mellit2005,  

Intra-hour 

Hybrid systems Lee2019-1, Li2019 

LSTM Huang2019, Lee2019-1, Li2019 

Neural Network (*RNN) Lee2019-1*, Li2019*, Sfetsos2000 

Regression (* with BP) Li2019, Zhong2018*, Reindl2017, Bouzerdoum2013, Shi2015, DaSilva2012 

Deep Reinforcement Learning (DRL) Dorokhov2022, O’Grady2022, Lee2019-2, 

Other Pelland2013, Crisosto2018, Zhong2017 

In summary, the wide variety of ML approaches, the very diverging results and qualities of the resulting models, and 

the stark differences in relevant features impacting model quality, show that this area of research is still in its infancy 

and only very few best practices for operational use are established as of today.  

3 Approach 
The explorative nature of our task resulted in an initial focus set on developing intra-day predictions of PV power 

output on the intra-day timeframe of 12-24 hours. To our knowledge, other than a few commercial approaches with 

limited prediction quality, there are only very few (published) systematic approaches studying PV power output 

predictions in Switzerland. In what follows, we describe our approach, which starts with identifying, aggregating, and 

cleaning the required data, developing features as input for our ML pipeline, scoring the resulting models and 

optimizing them based on residual analysis. 
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3.1 Data Collection & Feature Engineering 
To develop PV power output predictions for the intra-day case, we collected data for three locations: PV system 
information (such as location, tilt, number of modules, types of modules and inverters), measured PV power output, 
and meteorological data (such as temperature, global irradiance, clouds). 

3.1.1 Measured PV Power Data (Ground Truth) 
The independent variable (aka Ground Truth) is the PV power output (in watts, sometimes known as power yield). It 
was measured and logged by each systems’ sensors. We neglected the sensors' measurement errors, since they are 
generally very small compared to the prediction errors [Li2019]. 
 
For the three PV systems we had access to, the following table summarizes PV system producer information for the 
modules and inverters, their location, installation with respect to the sun (azimuth and tilt) and the amount of data 
we aggregated per location. Note that the locations are all Switzerland, geographically located close to each other (1.8 
- 5kms apart), and are in the same time zone (GMT+1). They are situated in pre-alpine (rugged) terrain, between 0.5 
and 1 kilometers south of the Lake of Zurich. 
 

Table 2: Description of PV Systems used for Ground Truth (and amount of available data) 
PV 
System 

Location 
Latitude 

Longitude 
Elevation 

Azimuth Tilt Modules Modules 
per 

String 

Strings 
per 

Inverter 

Inverter Number 
of days 
(hours) 
of data 

Comments 

Lab32 
47.19763 

8.72126 
510m 

90°  
270° 

30° 
30° 

21x SunPower SPR-
327NE-WHT 

3 
6 

3 
2 

1x SolarEdge 
Technologies Ltd 
SE10K-480V-CEC 

814 
(11’379) 

Lab MIT Coaching 
 
PV power output 
measured as one 
system, managed by 
Solar-Log 1200. 

EWH1 
47.18902 

8.70555 
650m 

145° 15° 
217x Jiangyin Hareon 
Power_HR_260P-18-Bb 

11 5 
4x Solarmax 15MT 
15MT3A-480V-
CEC * 

768 
(10’728) 

Data via our partner 
EW Höfe AG 

EWH2 
47.19632 

8.77167 
683m 

163° 10° 
1031x Seraphim Solar 
System SRP-260-6PB 

17 5 

12x Huawei 
Technologies 
SUN2000-22KTL-
US-CEC * 

768 
(10’742) 

* The EWH1 and EWH2 PV systems use several inverters models and not just the one listed in the 'Inverter' column. To simplify the models, the 
most often used inverter was used. The other inverters' performance characteristics were compared using the NREL SAM database and they were 
found to behave very similarly. 

3.1.2 Meteorological Data 
Our partner, Kachelmann GmbH, provided us with industry-leading, high resolution meteorological data for the three 
PV system locations. The forecast granularity is 1 hour, which in turn impacts the PV power output prediction 
granularity (i.e., also 1 hour). The forecast time window is 13-18 hours (forecast calculation every 6 hours). The 
resolution is 1 km2. The meteorological data is available for the entire Ground Truth dataset. 

3.2 Pre-Processing: Data Understanding and -Cleaning 
A core part of our work was an extensive pre-processing of the aggregated data, which includes plausibility checks 

(inter- and intra-comparisons of the 3 datasets and seasonal corrections), removing missing data, removing outliers 

(using IQR and rolling median filtering), normal distribution checks (Shapiro-Wilk, Lilliefors), removing data before 

sunrise and after sunset, and correlation tests between input factors (Pearson and pairwise correlation heatmaps). 

3.3 Feature Engineering 
Based on the aggregated and carefully cleaned data, we developed and extracted 14 features, categorized as 
meteorological, PV system specific, and seasonal.  
 

Table 3: Extracted features (with units) and determination of whether they were selected by the final General Model (using SelectKBest) 
Categories Feature Units Features 

selected 

Meteorological Temperature Celsius * 

Meteorological Effective irradiance 
(total plane of array (PoA) irradiance, adjusted by sun position, array orientation (tilt, azimuth), 
meteorological characteristics (diffuse light), based on global predicted irradiance, applied using Python Pvlib 
[William2018]) 

Watts * 

Meteorological Sunshine duration 0-1 * 

Meteorological Clouds low % * 

https://www.solar-log.com/en/
https://www.ewh.ch/
https://sam.nrel.gov/
https://kachelmannwetter.com/de
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://pvlib-python.readthedocs.io/en/stable/
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Meteorological Clouds medium % * 

Meteorological Clouds high % * 

Meteorological Precipitation mm * 

Meteorological Wind speed m/s * 

Meteorological Relative Humidity % * 

Meteorological Snow mm - 

PV system specific Model-based power output calculation 
(using panel-specific constants from NREL SAM, assumption: no shadow, calculations based on [King2004], 
applied using Python Pvlib [William2018]) 

Watts * 

Seasonal Time of Day Hour * 

Seasonal Day of Month Day - 

Seasonal Month of Year Month - 

3.4 Training & Scoring ML models and Residual Analysis 
The feature dataset was split into training and test sets; the test set accounting for 11% of the data (every 1st, 10th, 
20th of each month). We then developed a regression pipeline to train, validate and test predictive models using a 
broad variety of regression classifiers (R.): Linear R., Ridge R., Lasso R., ElasticNet R., Logistic R., Random Forest R., K-
nearest Neighbor R., Support Vector R, Boosted Decision Tree R., Gradient Boosting R., Extreme Gradient Boosting R., 
and Multi-Layer Perceptron (Feedforward Artificial Neural Network). As described above, the pipeline performs scaling 
(StandardScaler, RobustScaler, QuantileTransformer) and dimensionality reduction (feature selection using Principal 
Component Analysis (PCA), SelectKBest, recursive feature elimination (RFE)) as a pre-processing step, and then runs a 
10-fold cross-validation with each regression classifier. Hyperparameter tuning is performed to determine the optimal 
parameters for each regression classifier, by optimizing for both rsquare (r2) and the negative root mean squared error 
(nRMSE) in separate runs. We adapted the cross-validation approach to account for the temporal dependency of 
samples, using TimeSeriesSplit. The cross-validation splits the training data set into training and validation sets, and 
trains the predictive models on the first, and validates them with the latter. Using the test set, the resulting predictive 
models were then scored and ranked using standardized scores for regressions: R2, adj. R2, MAE, relative MAE (MAE 
/ max yield), MSE, RMSE, nRMSE, CV/bias, ME, MPE, SMAPE, Pearson Correlation, Kolmogorov-Smirnov, and others. 
Visual inspection and residual analysis were performed on the PV output predictions, which, for example, led to the 
introduction of seasonal features to better model temporal dependencies. 

4 Prediction Performance 
Our results show that training a general model on the entire dataset (i.e., LAB32, EWH1, EWH2) results in overall good 

performance. Individual models perform only slightly better. Of the 12 trained and hyperparameter tuned models, the 

three best performing classifiers (in increasing order of performance) are Random Forest, Extreme Gradient Boost, 

and the Multi-Layer Perceptron (ANN).  

Table 4: Standard scores for the Individual Models and General Model (Combined) trained with the Multi-Layer Perceptron (ANN)  

 R2 (%) adj. R2 (%) MAE (w) rel. MAE (%) MSE RMSE (w) NRMSE (%) 

LAB32 0.874026 0.872673 14.051059 0.051121 585.551378 24.198169 0.088039 

EWH1 0.850271 0.848562 14.404942 0.065842 563.367171 23.735357 0.111123 

EWH2 0.844395 0.842618 12.446203 0.058011 460.995214 21.470799 0.108088 

Combined 0.860481 0.859965 13.397499 0.048743 536.527724 23.163068 0.084273 

 

Table 5 shows excerpts of good predictions for all 3 sites on a selected day per season (note the different y-Axes). 

Table 5: Selected visualization of measured and predicted power output 

Spring 

 

https://sam.nrel.gov/
https://pvlib-python.readthedocs.io/en/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html
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Summer 

   
Autumn 

 
Winter 

   
 

In a separate analysis, we investigated the ability to train seasonal prediction models. Overall, they performed worse 

than the entire dataset, but better smoothed out large residuals. With a larger dataset consisting of more than just 

two seasons each, we expect that seasonal models to perform better. A seasonal residual analysis shows that since 

the power output is generally higher during the spring and summer seasons, the absolute residual values are higher 

as well. The following table visualizes the seasonal analysis exemplary, as the seasonal trend for the measured and 

predicted power output (including a comparison to Python Pvlib) is visualized. 

Table 6: Visualization of the trend when comparing measured with predicted power of our model (Lab32), as well as a comparison with a 
model from Pvlib. (Note that the test set consists of only the 1st, 10th and 20th of every month) 

Lab32 

 
EWH1 

 

https://pvlib-python.readthedocs.io/en/stable/
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EWH2 

 
 

While the high-quality and high-resolution meteorological data and inclusion of PV system characteristics allowed for 

near-perfect predictions on sunny (i.e., clearsky) days (e.g., the summer and spring example days in Table 5), there are 

also many days which are much harder to predict accurately on a intra-day timeframe of 13-18h. The large variability 

and volatility of weather conditions and mountainous, pre-alpine location of the three PV systems, aggravate accurate 

predictions on this longer timeframe. Overall, the prediction performance is comparable to results from previous work, 

which in most cases were optimized for locations with easier meteorological setups, such as no pre-alpine terrains. 

5 Contributions & next steps 
Our resulting model is trained with 13 features that were extracted from three large datasets in Switzerland after 

extensive data cleaning and understanding, and hyperparameter tuning on a broad set of 12 regression algorithms. In 

this report, we described the intermediate results of our predictions and show that it is feasible to predict PV power 

output by extracting not just meteorological features, but also extracting two features that consider the PV system 

characteristics. 

In 2021, we will continue to improve our intra-day models, by extracting additional features (e.g., humidity), by 

continuing improving the model based on residual analysis, by testing our hyperparameter tuning with additional 

scoring functions, and by training the models with additional data from longer time periods and new locations. Larger 

and separate datasets will further allow us to train and optimize several models, e.g., by splitting them up by season 

or weather classification types (sunny/clearsky, cloudy, rainy/foggy). We also intend to optimize model efficiency, by 

selecting and developing models for reduced training times and resource consumption, to improve economic and 

ecological aspects, which will be relevant for applying our models in practice. 

Another core focus will be on developing accurate PV power output predictions for our intra-hour (15-60min) use 

case for utility companies and power grid operators. We expect to be able to develop significantly better models than 

in the intra-day approach, based on our access of live data with minimal delay, including measured PV power data 

(access via PV systems’ web API) and additional meteorological live data from local weather stations (e.g., Netatmo). 

This will allow us to not only include adjacent days, but also intra-data data into the models, which will be based on 

Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) techniques. 

Finally, we are working on several practical applications for consuming our intra-day and intra-hour PV power data 

prediction models. This includes a private consumer facing interface to optimize power usage for the next day, based 

on expected PV power output and estimated future power use. Finally, we also hope to establish a partnership with a 

utility company or power grid operator to co-develop models for smart grid management and power trading, by 

leveraging intra-hour PV power data predictions and forecasts of (private) customers’ power consumption. 

Needs/Asks for Future Work 
To achieve our so far self-financed visions and goals, we are looking to establish industry and research partnerships: 

- New industry partnerships, with energy management or monitoring platform providers, power grid operators and 
energy provider companies; to gain (real-time) access to additional measured PV power output data, integrate 
power output predictions into power/grid management platforms, and co-fund the projects. 

- Extending research partnerships for knowledge and expertise exchange. 
- API access to consumers’ power usage to develop models for smart grid and load power management. 
Please contact us via meyer@mit-coaching.com in case you have any questions, inputs, and suggestions to our 

analysis, or want to discuss potential collaborations. Thank you!  
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